Правила переноса в уравнении

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Правила переноса в уравнении». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Часто в уравнениях встречается ситуация, когда при «x» стоит отрицательный коэффициент. Как, например, в уравнении ниже.

−2x = 10

Чтобы решить такое уравнение, снова зададим себе вопрос: «На что нужно разделить «−2», чтобы получить «1»?». Нужно разделить на «−2».

−2x = 10 /:(−2)

−2x
−2

=

10
−2

Решение линейных уравнений 7 класс

Рассмотрим другие примеры решения линейных уравнений. Обычно для решения уравнений нужно применять оба свойства (правило переноса и правило деления).

Также требуется вспомнить правило раскрытия скобок и правило приведения подобных.

  • 25x − 1 = 9
    25x = 9 + 1
    25x = 10 /: 25

    25x
    25

    =

    10
    25

    x =

    2
    5

    Ответ: x =

    2
    5

  • 11(y − 4) + 10(5 − 3y) − 3(4 − 3y) = −6
    11y − 44 + 50 − 30y − 12 + 9y = −6
    11y − 30y + 9y − 44 + 50 − 12 = −6
    20y − 30y + 6 − 12 = −6
    −10y − 6 = −6
    −10y = −6 + 6
    −10y = 0 /:(−10)

    −10y
    −10

    =

    0
    −10

    y = 0
    Ответ: y = 0

Основная информация по курсу алгебры для обучения и подготовки в экзаменам, ГВЭ, ЕГЭ, ОГЭ, ГИА Алгебра 6,7,8,9,10,11 класс, ЕГЭ, ГИА Система m линейных уравнений с n неизвестными это система вида: где a ij и b i (i=1,…,m; b=1,…,n) – некоторые известные числа, а x 1 ,…,x n – неизвестные числа. Линейные уравнения. Система линейных уравнений. Метод подстановки для решения систем линейных уравнений, порядок действий описан ниже. Линейные уравнения. Решение линейных уравнений. Метод подстановки.

Основы алгебры/Правило переноса слагаемого

Как найти неизвестное
слагаемое

Как найти неизвестное
уменьшаемое

Как найти неизвестное
вычитаемое

Чтобы найти неизвестное слагаемое, надо от суммы отнять известное слагаемое.

Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность.

x + 9 = 15
x = 15 − 9
x = 6
Проверка

x − 14 = 2
x = 14 + 2
x = 16
Проверка

16 − 2 = 14
14 = 14

5 − x = 3
x = 5 − 3
x = 2
Проверка

Как найти неизвестный
множитель

Как найти неизвестное
делимое

Как найти неизвестный
делитель

Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

Чтобы найти неизвестное делимое, надо частное умножить на делитель.

Чтобы найти неизвестный делитель, надо делимое разделить на частное.

y · 4 = 12
y = 12: 4
y = 3
Проверка

y: 7 = 2
y = 2 · 7
y = 14
Проверка

8: y = 4
y = 8: 4
y = 2
Проверка

Уравнение — это равенство, содержащее букву, знамение которой нужно найти. Решение уравнения — это тот набор значений букв, при котором уравнение превращается в верное равенство:

Напомним, что для решения уравнении надо слагаемые с неизвестным перенести в одну часть равенства, а числовые слагаемые в другую, привести подобные и получить такое равенство:

Из последнего равенства определим неизвестное по правилу: «один из множителей равен частному, деленному на второй множитель».

Так как рациональные числа а и Ь могут иметь одинаковые и разные знаки, то знак неизвестного определяется по правилам деления рациональных чисел.

Линейное уравнение необходимо упростить, раскрыв скобки и выполнив действия второй ступени (умножение и деление).

Перенести неизвестные в одну сторону от знака равенства, а числа — в другую сторону от знака равенства, получив тождественное заданному равенство,

Привести подобные слева и справа от знака равенства, получив равенство вида ax = b .

Вычислить корень уравнения (найти неизвестное х из равенства x = b : a ),

Выполнить проверку, подставив неизвестное в заданное уравнение.

Если получим тождество в числовом равенстве, то уравнение решено верно.

  1. Если уравнение задано произведением, равным 0, то для его решения используем свойство умножения: «произведение равно нулю, если один из сомножителей или оба сомножителя равны нулю».
  2. 27 (x — 3) = 0
    27 не равно 0, значит x — 3 = 0

    У второго примера два решения уравнения, так как
    это уравнение второй степени:

    Если коэффициенты уравнения являются обыкновенными дробями, то прежде всего надо избавиться от знаменателей. Для этого:

    Найти общий знаменатель;

    Определить дополнительные множители для каждого члена уравнения;

    Умножить числители дробей и целые числа на дополнительные множители и записать все члены уравнения без знаменателей (общий знаменатель можно отбросить);

    Перенести слагаемые с неизвестными в одну часть уравнения, а числовые слагаемые — в другую от знака равенства, получив равносильное равенство;

    Привести подобные члены;

    В любой части уравнения можно приводить подобные слагаемые или раскрывать скобку.

    Любой член уравнения можно переносить из одной части уравнения в другую, изменив его знак на противоположный.

    Обе части уравнения можно умножать (делить) на одно и то же число, кроме 0.

    В примере выше для решения уравнения были использованы все его свойства.

    Линейные уравнения — не самая сложная тема школьной математики. Но есть там свои фишки, которые могут озадачить даже подготовленного ученика. Разберёмся?)

    Обычно линейное уравнение определяется, как уравнение вида:

    Ничего сложного, правда? Особенно, если не замечать слова: «где а и b – любые числа» . А если заметить, да неосторожно задуматься?) Ведь, если а=0, b=0 (любые же числа можно?), то получается забавное выражение:

    Но и это ещё не всё! Если, скажем, а=0, а b=5, получается совсем уж что-то несусветное:

    Что напрягает и подрывает доверие к математике, да.) Особенно на экзаменах. А ведь из этих странных выражений ещё и икс найти надо! Которого нету вообще. И, что удивительно, этот икс очень просто находится. Мы научимся это делать. В этом уроке.

    Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

    Решаются такие конструкции примерно одинаково:

    1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
    2. Затем свести подобные
    3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

    Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

    В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

    Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

    Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

    1. Раскрываем скобки, если они есть.
    2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
    3. Приводим подобные слагаемые.
    4. Разделяем все на коэффициент при «иксе».

    Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

    Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

    • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
    • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

    Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

    Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

    Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

    Выполняем те же действия. Первый шаг:

    Перенесем все, что с переменной, влево, а без нее — вправо:

    Приводим подобные:

    Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

    \[\varnothing \],

    либо корней нет.

    Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

    Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

    Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

    И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

    Точно также мы поступаем и со вторым уравнением:

    Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

    Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

    Правило решений простых уравнений. Правила переноса в уравнениях

    Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

    На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

    Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

    В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

    Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

    1. Раскрыть скобки.
    2. Уединить переменные.
    3. Привести подобные.
    4. Разделить на коэффициент.

    Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

    Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

    1. Избавиться от дробей.
    2. Раскрыть скобки.
    3. Уединить переменные.
    4. Привести подобные.
    5. Разделить на коэффициент.

    Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

    . Наверняка все про тождественные преобразования ты и так уже знал.

    Считай, что мы просто освежили эти знания в твоей памяти и настало время для нечто большего — Например, для решения нашего большого примера: Как мы уже говорили ранее, глядя на него, не скажешь, что данное уравнение является линейным, но нам необходимо раскрыть скобки и осуществить тождественные преобразования.

    Так что начнем! Для начала вспоминаем формулы сокращенного умножения, в частности, квадрат суммы и квадрат разности.

    При этом не имеет значения, переносимое слагаемое число или переменная, либо выражение. −3×2(2+7x)−4+y=0. Переносим 1-е слагаемое в правую сторону уравнения.

    Получаем: −4+y=3×2(2+7x). Обратите внимание, что в нашем примере слагаемое — это выражение (−3×2(2+7x)). Поэтому нельзя отдельно переносить (−3×2) и (2+7x), так как это составляющие слагаемого. Именно поэтому не переносят (−3×2⋅2) и (7x).

    Однако мы модем раскрыть скобки и получить 2 слагаемых: (−3x‑⋅2) и (−3×2⋅7x).

    Задачи урока:- образовательные: создание условий для усвоения формирование вычислительных навыков с рациональными числами, формирование общеучебных и общекультурных навыков работы с информацией, формирование навыка применения решения уравнений.

    — воспитательные: умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем, интегрироваться в группу сверстников и строить продуктивное взаимодействие, воспитывать ответственность и аккуратность, оценивать себя и своих товарищей- развивающие :развитие зрительной памяти, внимания, смысловой памяти, умение обрабатывать информацию и ранжировать ее по указанным основаниям, формировать коммуникативную компетенцию учащихся; выбирать способы решения задач в зависимости от конкретных условий; рефлексия способов и условий действия, контроль и оценка процесса и результатов деятельности.

    Основные понятия: уравнение, корень уравнения, решение

    Правила переноса знаков в уравнении

    Правило переноса слагаемого. При решении и преобразовании уравнений зачастую возникает необходимость переноса слагаемого на другую сторону уравнения.

    Заметим, что слагаемое может иметь как знак «плюс», так и знак «минус». Согласно правилу, перенося слагаемое в другую часть уравнения, нужно изменить знак на противоположный.

    Кроме того, правило работает и для неравенств. Примеры переноса слагаемого: 5x+2=7x−6. Сначала переносим 5x из левой части уравнения в правую: 2=7x−6−5x.

    Далее переносим (−6) из правой части в левую: 2+6=7x−5x.

    Значит, чтобы найти одно из слагаемых, нужно из суммы вычесть известное слагаемое: И ещё один «слой» снят с неизвестной!

    Теперь ситуация «уменьшаемое — вычитаемое = разность» И последний шаг — известное произведение () и один из множителей () Уравнения данного типа чаще всего встречаются в задачах — именно к ним сводится 90% всех задач для поступления в 5 класс.

    Если кто-то из Черного королевства переходил в Белое, то сразу попадал в немилость Белого короля, а, если кто-то из Белого королевства переходил в Черное, то попадал в немилость Черного короля.

    Типичные уравнения: или Основная трудность — это правильно раскрыть скобки. Мы приведём несколько правил, которыми следует пользоваться в данном случае.

    Жителям королевств надо было что-то придумать, чтобы не гневить своих королей. Как вы считаете, что они придумали? (Ответы детей) — Переходя мост они меняли цвет одежды на противоположный! А теперь вернемся к нашим уравнениям и посмотрим, что происходит с числами при переходе через «мост» — из одной части равенства в другую.

    — Числа меняют свои знаки на противоположные! Правило. При переносе слагаемых из одной части уравнения в другую, знаки изменяем на противоположные!

    Таким образом, (4) есть верное числовое равенство.

    Но это означает, что a есть корень уравнения (2).

    Итак, каждый корень уравнения (1) является также корнем уравнения (2), т.

    е. (1)

    (2).

    Аналогично доказывается, что (2)(1). Итак, мы доказали, что при переносе любого слагаемого из одной части уравнения в другую с противоположным знаком получается равносильное уравнение.

    В частности, мы можем, если нужно, перенести все слагаемые в одну часть уравнения. Иначе говоря, f(x) = g(x) f(x) — g(x) = 0 что является частным случаем эквивалентности (1)(2). Мы видим, что любое уравнение с одним неизвестным можно заменить эквивалентным уравнением вида h(х) = 0, т.

    е. уравнением, в левой части которого стоит некоторая функция, а правая часть равна нулю. Указанное преобразование (перенос членов из одной части уравнения в другую) применяется при решении уравнений чрезвычайно часто.

    Решение уравнений на применение правила переноса слагаемых.

    Обычно в таком случае говорят, что обе части уравнения разделили на 5. Третье уравнение: Это уравнение можно переписать так: Следующее уравнение:

    Сделаем вывод: Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак.

    И решим ещё одно уравнение: Чтобы решить уравнение, содержащее подобные слагаемые нужно: 1) слагаемые, содержащие переменную, перенести в левую часть уравнения, а числа – в его правую часть, не забывая при переносе менять знаки на противоположные; 2) привести

    Например: 7 (4 — х) + 3 (х — 5) = 9х.

    • Раскрыть скобки: 28 — 7х + Зх — 15 = 9х
    • Перенести слагаемые с неизвестным в левую часть равенства, а числа — в правую часть равенства: -7х + Зх — 9x = -28 + 15.
    • Вычислить неизвестное x.
    • х = -13 : (-13)
    • Привести подобные члены: -13x = -13.
    • х = 1

    Определив значение неизвестного, мы решили уравнение. Чтобы произвести проверку правильности решения уравнения, надо полученное значение неизвестного (буквы) подставить в условие (заданное уравнение) и решить числовое равенство.

    Если числовое равенство обращается в тождество, то уравнение решено верно.

    1. 7 (4 — 1) + 3 (1 — 5) = 9 * 1
    2. 21 — 12 = 9
    3. 9 = 9
    4. 7 * 3 + 3 * (-4) = 9

    Уравнение решено верно, так как в результате проверки получено тождество.

    Например: Все приведенные выше неравенства являются линейными.

    Во всех них «сидит» очень важная особенность: в таких неравенствах нет иксов в квадрате, в кубе и т.д., кроме того в этих неравенствах нет деления на икс и икс не находится под знаком корня.

    Чтобы лучше распознавать линейные неравенства, настоятельно рекомендую тебе еще раз заглянуть в раздел «Скрытые» линейные уравнения или…» темы .

    Линейные неравенства обладают не меньшим талантом «скрываться».

    Чтобы не попасть впросак и с легкостью преобразовывать любые неравенства надо знать и успешно применять 3 очень важных правила. Эти знания здорово упростят тебе жизнь на пути в решении неравенств.

    Два неравенства равносильны, если они имеют одинаковые решения. Решить неравенство – значит найти все значения переменной, при которых неравенство обращается в верное числовое неравенство.

    Для упрощения процесса нахождения всех

    Например: Мы видим, что справа стоит , что, по идее, уже говорит о том, что уравнение не линейное.

    Мало того, если мы раскроем скобки, то получим еще два слагаемых, в которых будет , но не надо торопиться с выводами! Прежде, чем судить, является ли уравнение линейным, необходимо произвести все преобразования и таким образом, упростить исходный пример.

    При этом преобразования могут изменять внешний вид, но никак не саму суть уравнения. Иными словами данные преобразования должны быть тождественными или равносильными. Таких преобразований всего два, но они играют очень, ОЧЕНЬ важную роль при решении задач.

    Рассмотрим оба преобразования на конкретных примерах.

    Допустим, нам необходимо решить такое уравнение: Еще в начальной школе нам говорили: «с иксами – влево, без иксов – вправо». Какое выражение с иксом стоит справа?

    Их используют при решении сложных.

    1) 4+х=8 Отнимем от каждой части 4, т.е., 0+х=4 или х=4 2) х-5=2 Прибавим к обеим частям 5, получим х-5+5=2+5, х-0=7, х=7 3) х+1=х Надо такое число, складывая которое с 1, не изменится. Такого числа не существует, поэтому х не имеет корней 4) х+0=х Любое число, сложив с 0, не изменяется. Поэтому х является любым числом 5) 3-х=2 Вот это уже сложный пример.

    Правило переноса слагаемого.

    Примеры переноса слагаемого: 5x+2=7x−6.

    Сначала переносим 5x из левой части уравнения в правую: 2=7x−6−5x. Далее переносим (−6) из правой части в левую: 2+6=7x−5x. Обратите внимание, что знак «+» изменился на «-», а знак «-» на «+».

    При этом не имеет значения, переносимое слагаемое число или переменная, либо выражение. −3×2(2+7x)−4+y=0. Переносим 1-е слагаемое в правую сторону уравнения.

    Получаем: −4+y=3×2(2+7x). Обратите внимание, что в нашем примере слагаемое — это выражение (−3×2(2+7x)). Поэтому нельзя отдельно переносить (−3×2) и (2+7x), так как это составляющие слагаемого.

    Именно поэтому не переносят (−3×2⋅2) и (7x). Однако мы модем раскрыть скобки и получить 2 слагаемых: (−3x‑⋅2) и (−3×2⋅7x). Эти 2 слагаемых можно переносить отдельно друг от друга.

    Таким же образом преобразовывают неравенства: 7x+25>14 Собираем каждое число с одной стороны. Получаем: 7x>14−25 или 7x>−11 Доказательство.

    2-е части уравнения по определению одинаковы, поэтому можем вычитать из обеих частей уравнения одинаковые выражения, и равенство будет оставаться верным. Вычитать нужно выражение, которое в итоге нужно перенести в другую сторону.

    Тогда по одну сторону знака «=» оно сократится с тем, что было. А по другую сторону равенства выражение, которое мы вычли, появится со знаком «-». Это правило зачастую используется для решения .

    Для решения используются другие методы.

    По одну сторону знака «равно» оно сократится с тем, что было. По другую сторону равенства, выражение, которое мы вычли, появится со знаком «минус».

    Возьмём уравнение: Допустим мы хотим перенести все иксы из левой части уравнения в правую. Вычтем из обеих частей Слева сократится с , и иксов не останется.

    Справа сократится с , и останется : Теперь можно привести подобные слагаемые: Теперь нужно проверить, совпадают ли левая и правая части уравнения. Заменим неизвестную переменную получившимся результатом: Тождество верно.

    Правило для уравнений доказано, Возьмём неравенство: Допустим, мы хотим перенести все иксы из левой части неравенства в правую. Вычтем из обеих частей. Слева сократится с , и иксов не останется. Справа сократится с и останется : Теперь можно привести подобные слагаемые: Следовательно, 4 — корень уравнения 5x+2=7x-6.

    Так как для него тождество доказано, то и

    Но нельзя делить на неизвестное!

    Разберемся на примере, как использовать правило деления при решении линейных уравнений.

    Число «4», которое стоит при «x», называют числовым коэффициентом при неизвестном.

    Между числовым коэффициентом и неизвестном всегда стоит действие умножение. Чтобы решить уравнение необходимо сделать так, чтобы при «x» стоял коэффициент «1».

    Давайте зададим себе вопрос: «На что нужно разделить «4», чтобы получить «1»?». Ответ очевиден, нужно разделить на «4». Используем и разделим левую и правую части уравнения на «4».

    Не забудьте, что делить нужно и левую, и правую части.

    Используем и решим линейное уравнение до конца.

    Часто в уравнениях встречается ситуация, когда при «x» стоит отрицательный коэффициент.

    муниципальное бюджетное образовательное учреждение Савоськинская средняя школа №5 Урок в 6 классе по теме «Решение уравнений на применение правила переноса слагаемых».

    Тип урока: урок закрепления материала.

    Формы работы учащихся: фронтальная, индивидуальная, парная.

    Уравнение — это равенство, содержащее букву, знамение которой нужно найти.

    Решение уравнения — это тот набор значений букв, при котором уравнение превращается в верное равенство: Напомним, что для решения уравнении надо слагаемые с неизвестным перенести в одну часть равенства, а числовые слагаемые в другую, привести подобные и получить такое равенство: ах = Ь Из последнего равенства определим неизвестное по правилу:

    «один из множителей равен частному, деленному на второй множитель»

    . x = b : a Так как рациональные числа а и Ь могут иметь одинаковые и разные знаки, то знак неизвестного определяется по правилам деления рациональных чисел. Линейное уравнение необходимо упростить, раскрыв скобки и выполнив действия второй ступени (умножение и деление).

    Перенести неизвестные в одну сторону от знака равенства, а числа — в другую сторону от знака равенства, получив тождественное заданному равенство,

    При решении и преобразовании уравнений часто возникает потребность перенести слагаемое из одной стороны уравнения в другую. Необходимо отметить, что слагаемое может быть как со знаком «плюс», так и со знаком «минус». Правило говорит, что при переносе слагаемого из одной части уравнения в другую необходимо поменять знак.

    Перенесём сначала из левой части уравнения в правую: .

    Теперь перенесём число (−6) из правой части в левую: 2+6=7x-5x Заметьте, знак плюс поменялся на минус, а знак минус — на плюс. Причём неважно, является ли переносимое слагаемое числом, переменной или же целым выражением. Перенесём первое слагаемое в правую сторону уравнения. Получим: Отметим, что в этом примере слагаемым являлось целое выражение .

    При этом нельзя отдельно переносить или , поскольку это лишь составные части слагаемого.

    По той же причине нельзя переносить или .

    Решение простых линейных уравнений

    Иногда старшеклассники получают после преобразований полное квадратное уравнение, но при этом одночлены расположены не в порядке убывания их степени. Например, вот так:

    Дальше ученик, понадеявшись на свой могучий ум, решает это уравнение. Рассуждает он так: «Чему равны коэффициенты a, b, и c и так видно без перестановки.

    Я лучше не буду тратить время на переписывание и сразу посчитаю дискриминант». Интересно, что памяти обычно хватает, чтобы нормально посчитать дискриминант.

    Получив квадратное уравнение в таком виде:

    ученики резво начинают его решать через дискриминант. В принципе, при последовательном применении алгоритма ошибок не должно быть. Однако, довольно часто вмешивается человеческий фактор.

    При отрицательном первом коэффициенте ученики часто забывают про знак «минус» и получают ошибочные корни.

    Чтобы перестраховаться, достаточно домножить уравнение на –1, и получить положительный коэффициент при x²:

    Вот такое уравнение гораздо приятнее решать.

    Рассмотрим уравнение:

    Не стоит бросаться в решение с головой и сразу начинать считать дискриминант. Наверняка, в конечном счёте у вас всё получится, но всё же стоит упростить себе задачу. Дробные коэффициенты очень неудобны, поэтому от них надо постараться избавится.

    Для этого нужно домножить уравнение на подходящее число. В примере выше нужно домножить на 5. Но судя по нашему опыту, ученики не сразу это делают. Чаще всего они домножают на 10, а потом, заметив, что все коэффициенты чётные, сокращают на 2 (см.

    первое правило).

    Получается вот такое удобное уравнение:

    Часто ученики «подвисают», пытаясь решить какое-нибудь уравнение сразу в уме. Это похвально, но если вы ищете корень больше 10 секунд, это значит одно из двух.

    Либо вы пока не до конца освоили этот метод, чтобы решать его в уме, и лучше пока записывать вычисления. Либо вы недооценили задачу и нужно использовать другой метод.

    Например, второе бывает, когда ученик пытается подобрать корни через теорему Виета в уравнении, у которого иррациональные корни.

    Уравнения. Правила переноса в уравнениях

    Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.

    В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

    Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

    Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

    Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

    Решить уравнение значит найти все возможные корни или убедиться, что их нет.

    Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

    Приходите решать увлекательные задачки по математике в детскую школу Skysmart. Поможем разобраться в сложной теме, подтянем оценки и покажем, что математика может быть захватывающим приключением.

    Запишите ребенка на бесплатный вводный урок: познакомим с форматом, выявим пробелы и наметим индивидуальную программу обучения.

    Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

    Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

    Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

    Что поможет в решении:

    • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
    • если а равно нулю — у уравнения нет корней;
    • если а и b равны нулю, то корень уравнения — любое число.
    Квадратное уравнение выглядит так: ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

    Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

    Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.

    Числовой коэффициент — число, которое стоит при неизвестной переменной.

    Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

    • кубические
    • уравнение четвёртой степени
    • иррациональные и рациональные
    • системы линейных алгебраических уравнений

    Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

    1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

    Для примера рассмотрим простейшее уравнение: x+3=5

    Начнем с того, что в каждом уравнении есть левая и правая часть.

    Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

    Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Решаем так:

    1. Перенести 1 из левой части в правую со знаком минус.

      6х = 19 — 1

    2. Выполнить вычитание.

      6х = 18

    3. Разделить обе части на общий множитель, то есть 6.

      х = 2

    Ответ: х = 2.

    Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.

    Решаем так:

    1. Раскрыть скобки

      5х — 15 + 2 = 3х — 2 + 2х — 1

    2. Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены.

      5х — 3х — 2х = — 12 — 1 + 15 — 2

    3. Приведем подобные члены.

      0х = 0

    Ответ: х — любое число.

    Пример 3. Решить: 4х = 1/8.

    Решаем так:

    1. Найти неизвестную переменную.

      х = 1/8 : 4

      х = 1/12

    Ответ: 1/12 или 0,83. О десятичных дробях можно почитать здесь.

    Пример 4. Решить: 4(х + 2) = 6 — 7х.

    Решаем так:

    1. 4х + 8 = 6 — 7х
    2. 4х + 7х = 6 — 8
    3. 11х = −2
    4. х = −2 : 11
    5. х = — 0, 18

    Ответ: — 0,18.


    Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *