Как решать уравнение если дискриминант равен нулю

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Как решать уравнение если дискриминант равен нулю». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Это уравнение немного посложнее. Когда мы выделяем полный квадрат, первый член квадратного трёхчлена мы представляем в виде квадрата какого-нибудь выражения.

И это нужно запомнить навсегда. С помощью этого уравнения мы и определяем количество корней в квадратном уравнении.

Решение неполных квадратных уравнений

В этом случае высокообразованные школьные учителя говорят, что уравнение имеет один корень, но мы, простые люди, знающие следствие из основной теоремы алгебры, говорим, что это уравнение имеет два корня, просто они одинаковые. Иначе говоря, уравнение имеет один корень кратности два.
А если на него очень внимательно посмотреть, то можно заметить, что этот квадратный трехчлен представляет собой точный квадрат.

Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел результатом всегда будет положительное число.

Остальные способы помогут сделать это быстрее, но если у тебя возникают проблемы с квадратными уравнениями, для начала освой решение с помощью дискриминанта.

Стало очевидно, что результат в этой задаче «-1». В ситуации если D равен 0, левую часть равенства всегда получится свернуть по формуле «квадрат суммы».

Как решить квадратное уравнение

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

Формула корней квадратного уравнения «переоткрывалась» неоднократно. Один из первых дошедших до наших дней выводов этой формулы принажлежит индийскому математику Брахмагупте (около 598 г.). Среднеазиатский учёный аль-Хорезми (IX в.) получил эту формулу методом выделения полного квадрата с помощью геометрической иллюстрации.

В этом уроке выведем формулы для решения квадратных уравнений с чётным вторым коэффициентом и научимся решать такие квадратные уравнения, используя эти формулы.

Чтобы решить такое уравнение необходимо переменную x вынести за скобки. А потом каждый множитель приравнять к нулю и решить уже простые уравнения.

Товар, количество которого 187,5 кг, взвешивают в одинаковых ящиках. Если в каждом ящике количество товара уменьшить на 2 кг, то следовало бы использовать на 2 ящика больше и при этом 2 кг товара остались бы невзвешенными. Сколько кг товара взвешивают в каждом ящике?

Решение. Чтобы решить данное неполное квадратное уравнение, перенесём в его правую часть свободный член с противоположным знаком и разделим обе части уравнения на 3.

Как видно из информации, представленной ниже, если дискриминант будет больше нуля, то уравнение будет иметь два корня.

Это значит, что имеется три корня в области действительных чисел. При нулевом есть кратные решения. Если D < 0, то два корня комплексно-сопряженные, которые дают отрицательное значение при возведении в квадрат, а также один корень - вещественный. Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Пояснение формул: сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня. Следовательно, теорему Виета можно применять и для поиска корней приведённого квадратного уравнения. В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями. Решение квадратных уравнений этим способом очень простое, главное запомнить последовательность действий и пару формул.

Внимание! Zaochnik не продает дипломы, аттестаты об образовании и иные документы об образовании.

Но в уравнении всегда должен присутствовать икс в квадрате!!! Иначе это будет уже не квадратное, а какое-то другое уравнение.

Если уравнение неполное, раскладываем левую часть на множители и приравниваем каждый множитель к нулю.

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Если дискриминант получался отрицательным, то считается, что корней уравнение не имеет. Если положительный — можно найти два корня (см. картинку). А вот в случае, когда дискриминант равен нулю, оба корня (Х1 и Х2) становятся равны друг другу, т.к.

Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами.

И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!

Бывает и так, что квадратное уравнение имеет только один корень или вовсе не имеет корней. Такие уравнения мы рассмотрим позже.

Его корнями окажутся все значения переменной, при которых оно превращается в тождество. Такое равенство допустимо переписать, как произведение i, (w — w1) и (w — w2) равное 0. В этом случае очевидно, что если коэффициент «i» не обращается в ноль, то функция в левой части станет нулевой только в случае, если x принимает значение w1 или w2.

В данном случае левая часть уже не является квадратом суммы или разности. Поэтому нужно искать другие пути решения.

Статью подготовили специалисты образовательного сервиса Zaochnik.

Честно говоря, при простом решении квадратных уравнений, понятие дискриминанта не особо-то и требуется. Подставляем в формулу значения коэффициентов, да считаем. Там всё само собой получается, и два корня, и один, и ни одного.

При отрицательном дискриминанте у квадратного уравнения не будет действительных корней, но возможна пара комплексно сопряженных корней, определяемых теми же полученными нами формулами корней.

В-третьих, дискриминант, находимый по формуле с четным вторым коэффициентом, то есть D1, в 4 раза меньше дискриминанта D.
Прочих корней уравнение не будет иметь. Мы можем это продемонстрировать, используя метод от противного.

Алгоритм решения квадратных уравнений по формулам корней

Если какой-то из коэффициентов равен нулю (то есть отсутствует), то уравнение значительно уменьшается и принимает более простой вид.
Левая часть является произведением, а правая часть равна нулю. Произведение равно нулю, если хотя бы один из сомножителей равен нулю.

Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение.

6 thoughts on “Квадратное уравнение”

Математические калькуляторы: корни, дроби, степени, уравнения, фигуры, системы счисления и другие калькуляторы.

Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован.